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A number of problems arise when long-range forces, such as those governed by
Bessel functions, are used in particle–particle simulations. If a simple cutoff for the
interaction is used, the system may find an equilibrium configuration at zero tem-
perature that is not a regular lattice yet has an energy lower than the theoretically
predicted minimum for the physical system. We demonstrate two methods to over-
come these problems in Monte Carlo and molecular dynamics simulations. The first
uses a smoothed potential to truncate the interaction in a single unit cell: this is appro-
priate for phenomenological characterisations, but may be applied to any potential.
The second is a new method for summing the unmodified potential in an infinitely
tiled periodic system, which is in excess of 20,000 times faster than previous naive
methods which add periodic images in shells of increasing radius: this is suitable for
quantitative studies. Finally, we show that numerical experiments which do not han-
dle the long-range force carefully may give misleading results: both of our proposed
methods overcome these problems.c© 2000 Academic Press
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1. INTRODUCTION

Considerable effort has been invested in handling long-range forces for particle–particle
simulations. The conventional cutoff approach truncates the potential in a single unit cell
for separations greater than half the system dimension. In general it is better to sum the
potential over a number of repeats of the unit cell. Infinite summation methods include
the Ewald summation [1–3], multipole methods [4], lattice summation methods [5], the
Lekner summation method [6, 7], and a novel method for logarithmic interactions [8]. In
this paper we review some of the problems which can occur when the potential is naively

372

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



METHODS FOR HANDLING LONG-RANGE FORCES 373

truncated, which have not previously been widely reported in the literature. We then derive
two methods which overcome these problems. The first is suitable for phenomenological
studies of systems and smooths the potential within a single unit cell. The second is a new
real-space summation method appropriate for potentials governed by Bessel functions. This
provides a speed-up of at least 20,000 compared to the current method of summing in a
series of shells of increasing radius [9].

In Section 2 we introduce our model system, which is a simulation of a layered super-
conductor. We discuss the problems which arise with cutting off this potential in a single
unit cell in Section 3, and we give a simple method of smoothing the potential which over-
comes these problems in Section 4. In Section 5 we consider an infinitely tiled periodic
system and derive our new summation method. Section 6 describes a simulation of shearing
a superconductor lattice using our new methods and constrasts it with the results obtained
when the potential is cut off. We draw our conclusions in Section 7.

2. MODEL SYSTEM

We will consider the long-range forces which arise in the simulation of pancake vortices
in layered high-temperature superconductors [10]. The potential is governed by [9, 11–14]

U (r )

c
= K0

(
r

λ

)
, (1)

whereλ is the penetration depth of the magnetic field,r is the distance between the particles,
andc is a constant. This may be approximated as

U (r )

c
=
{
(πλ/2r )1/2 exp(−r/λ) r →∞
ln(λ/r )+ 0.12 r ¿ λ.

(2)

Sinceλ can be several orders of magnitude larger thanr [9], theK0 potential has a very long-
range character. It is therefore necessary to either (i) only consider the interaction inside a
single unit cell which contains a large number of particles or (ii) sum the interaction over
period repeats of the unit cell.

Our findings are also of relevance to the simulation of other systems governed by long-
range forces such as the interaction of electrically charged rods [8]. We will show results
for Monte Carlo and molecular dynamics simulations where the two-dimensional unit cell
geometry can be chosen to be a rectangle, a parallelogram, or a hexagon. In all cases periodic
boundary conditions are employed.

3. CUTOFF POTENTIAL

The standard approach is to cut off the potential to be constant outside a circle of radius
equal to min(Lx/2, L y/2), whereLx and L y are the lengths of the sides of the unit cell.
Since the force is the gradient of the potential, it is zero outside the cutoff radius. We then
define the distance between particles,r , to be the minimum image distance [3].

In Fig. 1 the real force dependenceF(r ) is compared to that for a simulation system with
a simple geometrical cutoff. For vortices in superconductors, Abrikosov [15] demonstrated
theoretically that the lowest energy configuration for an infinite lattice is the hexagonal
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FIG. 1. A long-range force: (solid line) full force; (dotted line) force cut off at a distancercutoff; (dashed line)
smoothed force. Distances are measured in multiples of the ground-state lattice spacing.

lattice, or so-called Abrikosov lattice, with an associated Abrikosov lattice energy. However,
when using a sharp cutoff in our simulations we find many configurations with energies
lower than the Abrikosov lattice energy.

Figure 2 shows the results from a molecular dynamics simulation of a small number of
particles in which the temperature in the system is cycled from 0 K to half the melting
temperature of the vortex solid and is then returned to 0 K. The temperature is introduced
via a stochastic noise term. The Delaunay triangulation of the vortex configuration at the end
of the simulation in Fig. 2 is elastically deformed. Detailed examination of the triangulation
shows that the elastic deformations arise due to particles gathering on the boundaries of the
cutoff circles. In this position they minimise their contribution to the energy (or force) in the
system. This gives rise to the “wavy lines” visible in Fig. 2, with a curvature characterised
by the cutoff radius. To demonstrate this, we have shown the cutoff circles corresponding to

FIG. 2. (left) Molecular dynamics simulation of 90 particles using a cutoff potential which start in a hexagonal
configuration at 0 K (with Abrikosov lattice energy,Ea), are heated to half their melting temperature (Tm), and
then returned to 0 K. Temperature is introduced via a stochastic noise term. The system finds a new configuration
with energy lower than the energy of the regular lattice. (right) Delaunay triangulation of the final configuration of
the particles at time step 5000. Two cutoff circles are shown to demonstrate that particles align along these circles.
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FIG. 3. Monte Carlo simulation of 432 particles using a conventional cutoff potential. The system starts in a
regular hexagonal Abrikosov lattice and is heated above its melting point to∼2Tm, then annealed slowly to zero tem-
perature in steps of 0.01Tm each of 5000 sweeps. (left) The energy of the system drops below the Abrikosov lattice
energy,Ea. (right) Delaunay triangulation of the final disordered configuration. The topological defects are circled.

two of the particles. The wavy lines are less evident in larger systems, since their curvature
is inversely proportional to the cutoff radius.

If the system is heated above its melting temperature and then annealed slowly, the
final equilibrium state (i) has an energy lower than the Abrikosov energy and (ii) contains
topological defects. A topological defect is a particle which does not have six nearest
neighbours in the Delaunay triangulation. We have repeated these results for molecular
dynamics and Monte Carlo simulations with up to 2000 particles. The result in Fig. 3 for a
Monte Carlo simulation of a system annealed from a liquid state exhibits low energy and
contains defects. We have verified that our results are independent of the geometry of the
unit cell (rectangular, parallelogram, or hexagonal).

These problems are clearly artificial and are caused by imposing a sharp cutoff on the very
long-range nature of the interaction. Since the penetration depth,λ, is generally much larger
than the lattice spacing, it would require systems with several hundred thousand particles
before the effects of this finite size problem began to become less significant. Methods to
deal with such large systems with the Bessel function interaction potential are currently
being developed [16].

In studies of high-temperature superconductors, interest has recently developed in the
formation of topologically ordered states which exhibit quasi-long-range translational order,
the so-called Bragg glass. These states occur when the vortices are weakly pinned and
have been investigated both theoretically and experimentally [17, 18]. Other studies have
focussed on the structural properties of the dynamics of vortex systems [19, 20]. In both
cases it is important that the ground state for an unpinned system should be a hexagonal
lattice without topological defects. Furthermore for the calculation of numerical phase
diagrams as a function of disordering pinning, it is vital that the disorder is not introduced
by the model itself.

We therefore propose two methods which avoid the problems described above. The first
involves modifying the potential near the cutoff and allows qualitative simulation of small
systems using only a single unit cell. The second is a new fast summation method that allows
the infinitely tiled periodic system to be considered and allows quantitative simulations to
be performed.
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FIG. 4. The magnitude of the force field that a particle at position (0, 0) experiences from a system of 418
particles using (left) the sharp cutoff and (right) the smooth cutoff. The effect of smoothing the potential is to
remove the discontinuities in the force.

4. SMOOTHED POTENTIAL

In Fig. 4 (left) we show the force field experienced by a vortex due to its surrounding
particles in a hexagonal configuration. The discontinuities are caused by the artificial step
in the force function shown in Fig. 1. It is natural to introduce a smoothed potential,
which reduces the force smoothly to zero over a region fromr fade to rcutoff, and we impose
C1 continuity of the force atr = r fade andr = rcutoff. The smoothed potential is shown in
Fig. 1, and the resulting smooth force field is shown in Fig. 4 (right). The smoothing
distancercutoff− r fade is a free parameter which should be kept as small as possible to
maintain the original force over the largest possible range. Numerical experiments show
that three lattice spacings is sufficient. Figure 5 shows the results of a Monte Carlo simulation
using a similarly smoothed energy. Simulations using this modified potential do not find

FIG. 5. Monte Carlo simulation of 432 particles using a potential smoothed over three lattice spacings. (left)
The energy of the system never drops below the Abrikosov lattice energy,Ea. (right) Delaunay triangulation of
the final configuration shows the system has a hexagonal ground state.
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configurations below the Abrikosov energy, and topological defects only occur when the
system is annealed very rapidly.

The interpretation is that due to the slow force change at the cutoff (enforced by the
derivative being zero) a particle pair separated by a distance of roughlyrcutoff experiences
continuous and small changes in force if their positions are perturbed. This is in contrast to
the large discontinuous fluctuations, which can enable the system to discover configurations
with energies less than the Abrikosov energy. We have also used interpolating polynomials
of higher order and an exponential function in the smoothing region: in all cases the system
does not discover energy states below the Abrikosov energy.

It is important to consider whether the modification of the original force with the smooth
cutoff affects the system’s behaviour. Using a cutoff to the long-range interaction is a major
change of the long-range interaction. However, introducing the smoothing distance and
altering the force in the region betweenr fadeandrcutoff cannot be worse than using a slightly
smaller system withr ′cutoff= r fade. The enormous advantage of using a smooth cutoff is that
the structural properties of the system can be simulated correctly and that the lowest energy
configuration is identical to the theoretical ground state. For studies of the dynamics of
vortices, recent results show that the precise details of the long-range particle interaction
are not crucial [13]. We therefore recommend the smoothed potential for phenomenological
characterisation of superconductors.

5. FAST INFINITE SUMMATION

An alternative approach to modifying the potential is to sum the potential function over
periodic repeats of the unit cell, which provides the best representation of the system given
only a finite number of particles. We write the potential (1) in the form [9]

U (r )

c
= K ∗0

( |r |̄
λ

)
=
∑

mx,my

K0

(
r
¯
+ Lxmxx̂ + L ymyŷ

λ

)
, (3)

wheremx andmy are integers andLx andL y are the lengths of the edges of the simulation
cell. This is truncated such thatm2

x +m2
y≤ N2

m; we sum the potential in shells of increasing
radius,Nm, until it has converged. Following Ryuet al. [9], we will use a value for the
penetration depth,λ, at 0 K of 7700Å for Mo77Ge23. We will return to the temperature
dependence ofλ later. In Fig. 6, we show the exponentially fast convergence of the energy
between two particles in a simulation of 300 vortices in the Abrikosov lattice state as
more image cells are included. We also show the time taken to perform this calculation
on a 450 MHz Pentium II using Compaq (Digital) Visual Fortran under Windows NT 4.0.
For the particle–particle energy to converge to a relative error better than 1× 10−8 requires
Nm∼ 300, which takes∼300,000 calls to theK0 function. This ensures that the total system
energy is accurate to better than 0.01%.

We now derive a new method to perform this infinite summation. In Fig. 7 we have

Z2 = (mx Lx)
2+ (myL y)

2

z2 = (xi − xj )
2+ (yi − yj )

2

(4)

θ = tan−1

(
xi − xj

yi − yj

)
+ π

2

ϕ = tan−1

(
myL y

mx Lx

)
,
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FIG. 6. Fractional error(E∞ − En)/E∞ and time taken to compute the energyEn between two particles
separated by a single lattice spacing in an infinitely tiled periodic system whenn image cells are used. Here,E∞
is estimated by allowing the summation to converge to machine accuracy.

which yields

φ = θ + ϕ
(5)

w2 = Z2+ z2− 2zZcos(φ).

We may use the Gegenbauer addition formulae [21] to write

K0

(
w

λ

)
=

∞∑
k=−∞

Kk

(
Z

λ

)
Ik

(
z

λ

)
cos(kφ) (6)

FIG. 7. Two particles in a unit cell with infinite periodic repeats.
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for the energy between a particlei and one of the periodic images ofj , whereIk andKk

are modified Bessel functions. This formula requiresz≤ Z, which is automatically satisfied
sincez is the minimum image distance betweeni and j . We can therefore write the total
energy (3) of two particlesi and j summed over all periodic images in the form

K ∗0

( |r |̄
λ

)
= K ∗0

(
w

λ

)
= K0

(
z

λ

)
+

∑
mx,my

notmx=my=0

∞∑
k=−∞

Kk

(
Z

λ

)
Ik

(
z

λ

)
cos(kφ), (7)

where the casemx =my= 0, for whichz 6< Z, is the contribution to the energy from the
unit cell which must be explicitly included as a separate term. Further rearrangement and
use of (5) gives

K ∗0

(
w

λ

)
= K0

(
z

λ

)
+

∞∑
k=−∞

Ik

(
z

λ

)
[ck cos(kθ)− sk sin(kθ)], (8)

where

ck =
∑

mx,my

notmx=my=0

Kk

(
Z

λ

)
cos(kϕ) and sk =

∑
mx,my

notmx=my=0

Kk

(
Z

λ

)
sin(kϕ). (9)

Equations (8) and (9) have the remarkable property that the coefficients corresponding
to the infinite summation over the periodic repeats of the unit cell can be precomputed.
This reduces the double summation in (3) to a single summation. Furthermore, due to the
exponential convergence of the Gegenbauer addition formulae, the sum may be truncated
at ktrunc∼ 5–20 terms. A further factor of two in performance can be obtained by using
symmetry to convert the summation fromk=−∞ . . .∞ to the rangek= 0 . . .∞.

The form (8) closely resembles a Fourier type summation method, yet the whole calcula-
tion proceeds in real space in contrast to the Ewald summation method [22]. Our proposed
method couples directly to a multipole method for computing the interaction energy inside
the unit cell in O(N) time [16], which is based on the Gegenbauer addition formulae, rather
than a Taylor series expansion. Our O(N) method provides further speed-up when there
are more than∼1200 particles in the unit cell. This is analogous to the method described
in [5], which couples a lattice summation method with a multipole method based on Taylor
series. It is certainly not appropriate to use the method proposed in [8], which sums a
genuinely logarithmic potential over infinite repeats of the unit cell, since the logarithmic
approximation to theK0 potential is only valid for smallr as shown in (2).

The convergence of the energy between two particles in the Abrikosov lattice is identical
to the convergence shown in Fig. 6 as we add more terms to the calculation of the coefficients
ck andsk. We have chosen the case of two nearest neighbours, which yields the slowest
convergence of (8) sincez takes its smallest value.

In a superconductor,λ is a function of the temperature. For our model system (Mo77Ge23)
λ(T)= λ(0)/(1− T/Tc)

1/2 [9], whereTc= 5.63 K is the critical temperature at which the
material loses its superconducting properties. Hence the coefficientsck andsk need to be
recomputed at each temperature. As the temperature increases additional image cells need to
be included in both (3) and the precomputation (9). The crucial difference, however, between
(3) and (8) is that the time taken to evaluate the energy using (8) remains constant once the
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FIG. 8. Speed-up of fast infinite summation method over naive implementation when the relative error in the
energy between each pair of particles is fixed at 1× 10−5: both methods yield identical results.

coefficients are available, whereas the naive summation requires considerable numbers of
additional image cells to converge to the solution. In Fig. 8 we show the speed-up of our
method when computing the energy between two particles at a fixed accuracy of 1× 10−5

(relative to the energy computed to machine accuracy by either method). In all cases the
resulting energies are shown to be identical to the stated accuracy. At 0 K and using 5 terms
in the truncation of (8), we have a speed-up of 20,000 over the naive summation method.
This rises to 400,000 for temperatures approachingTc. If the particle energy is required
to be accurate to 1× 10−8, then, using 30 coefficients, the speed-ups are between 50,000
(T = 0 K) and 1,000,000(T∼ Tc).

Since the coefficientsck andsk depend onλ (and hence temperature), the method may
appear to be costly if the temperature is changed at every molecular dynamics or Monte
Carlo step. We now discuss several ways to overcome this. First, it is possible to perform
simulations at a small number of temperatures and use the data from these to obtain in-
formation about the behaviour of the system as a continuous function of temperature [23,
24]. Thus improving the sophistication of the analysis of the results can reduce the number
coefficientsck andsk which need to be precalculated. Second, it is possible to compute the
ck andsk at a small set of temperatures and use interpolation to derive their values at other
temperatures. Finally, since only∼5–20 coefficients are needed, it is straightforward to
compute once and store on disk the values ofck andsk for each temperature to be explored.
These values will be reused a large number of times in a typical set of numerical simulations.

We implement (8) using a recurrence relation [25] for the trigonometric terms and a
vendor-optimised vector Bessel function. Goertzel’s algorithm [26] could be employed for
additional efficiency, though the improvement is likely to be marginal. The remarkable
speed-up obtained is due to the fixed work equivalent to roughly five calls to a Bessel
function routine required for (8), compared to∼100,000 calls required for (3) (at 0 K). The
five calls are: two to initialise the Bessel recurrence, one to evaluate the contribution from
the unit cell, and the equivalent of roughly a further two for the remaining trigonometric



METHODS FOR HANDLING LONG-RANGE FORCES 381

terms. Our infinite summation is correspondingly five times slower than using the smoothed
potential in a single unit cell, which requires evaluation of a single Bessel function or a
polynomial. This is confirmed by experiments. For simulations using the fast infinite lattice
summation, results are similar to those of Fig. 5. The infinite lattice summation method is
suitable for quantitative studies of superconductors.

6. RESULTS

In the previous sections we have demonstrated that the phenomenological potential and
the infinitely summed potential ensure that the Abrikosov lattice is the minimum energy
configuration for our system. We now show that the presence of dislocations, which also
results from incorrect handling of the long-range potential, seriously affects study of the
elastic properties of a lattice. For superconductors the structure of the lattice determines the
static and dynamic properties of the vortex lattice. This is known from experimental [27, 28]
and theoretical work [29]. The simulation potential should not introduce dislocations, since
this will affect the onset of plasticity in the lattice which is directly related to characterising
current–voltage behaviour, and thus to applications.

We have considered a simulation of the shearing of a hexagonal lattice, which is a sim-
plified version of the simulations required to perform current–voltage characterisations.
Inset (a) in Fig. 9 shows a Delaunay triangulation for half the simulation cell demonstrating

FIG. 9. Change in energy,1E (in simulation units), as a function of a shearing force,fshear (in simulation
units), for the smooth and the sharp cutoffs. For the infinite lattice summation we obtain qualitatively similar
results. Insets (a), (b1), and (b2) show different snapshots of vortex configurations. Insets (c1) and (c2) show the
local hexagonal order,96, as the experiment progresses (see text for details).



382 FANGOHR ET AL.

the experimental setup: a shearing force is applied to the central row of particles marked
by black points, and the particles marked by open circles are not allowed to move in the
x-direction. The main diagram shows the resulting change in energy as a response to the
shearing force. The upper part of the figure shows data for the smooth cutoff, with the lower
part showing the results for the sharp cutoff. The smooth cutoff and the infinite lattice sum-
mation produce the expected behaviour: with increasing shear stress the energy increases.
The slope of the energy change as a function of the displacement characterises the shear
elastic modulus of the crystal. Inset (b1) shows a triangulation of a system which has been
slightly tilted by the applied force. In contrast, when the sharp cutoff is employed the energy
decreases for applied shear stress; i.e., the material appears to collapse after a shearing force
is employed (inset b2)!

Insets (c1) and (c2) show the time evolution of the local hexatic order,

96 = 1

nbond

∣∣∣∣∑
k

exp(i 6θk)

∣∣∣∣,
where the sum runs over all bond anglesθk in the Delaunay triangulation. Every 50,000
time steps the system starts as a hexagonal lattice(96= 1) and a new shearing force is
applied for the next 50,000 time steps.

In (c1), which shows the smoothed potential,96 decreases continuously until a static
state is reached, reflecting the shearing of the system. The energy data is taken from these
static states. In (c2) (sharp cutoff),96 drops suddenly to a much smaller value, representing
the sudden change to configurations similar to those shown in (b2). Thus, the mechanical
properties of the lattice using a sharp cutoff are severely affected by the incorrect han-
dling of the long-range potential: this would seriously affect numerical simulations aimed
at studying elastic properties of superconductors. The smooth cutoff and the infinite lattice
sum produce the correct physical behaviour and can be used in more complex numerical
simulations for phenomenological (smoothed potential) or quantitative (infinite summation)
study of the dynamic phase diagram of the superconductor lattice [30, 31].

7. CONCLUSIONS

For Monte Carlo and molecular dynamics simulations using long-range interactions
subject to periodic boundary conditions, a sharp cutoff for the interaction energy (or force)
can yield misleading results. We have considered the case of superconductors, in which
the potential is governed by a Bessel function. Monte Carlo simulations are often used to
study phase diagrams numerically, and it is vital that the phase behaviour of the system not
be affected by the model itself. We find that when a sharp cutoff is used the system can
find irregular lattice configurations with an energy below the theoretical ground state of a
regular hexagonal lattice. In molecular dynamics, study of the dynamical phase diagram of
the material can be dramatically affected by incorrect handling of the long-range potential.

We have presented two methods which overcome these problems. The first is suitable for
phenomenological studies of systems and uses a smoothed potential, but still truncates the
interaction over a single unit cell. Annealing a system governed by this modified potential
yields a perfect hexagonal lattice which is the global energy minimum. This is the compu-
tationally least expensive option and is applicable to any potential. The second sums the
interaction over the infinitely tiled unit cell and is suitable for quantitative system studies.
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Previous methods for performing this add the tiled images in a series of shells of increasing
radius. We have shown that with the precomputation of a set of Fourier type coefficients,
the whole infinite summation can be computed using a summation which converges ex-
ponentially fast and results in a speed-up of between 20,000 and 1,000,000 over the naive
summation, depending on the range of the interaction and the desired accuracy. The deriva-
tion of the summation proceeds in real space, and the results converge exactly to those
obtained from other summation methods. This is roughly five times as slow as using the
smoothed potential, but it is the most accurate method for systems of finite size. We will
report elsewhere on the results of systems we have studied using our methods [30, 31] and
also on a method for evaluating the energy within the unit cell in O(N) time [16].
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